Пусть вектор задан координатами своего начала A(ax; ay; az) и конца B(bx; by; bz) и пусть точка C(cx; cy; cz) расположена между точка A и B
пусть при этом известно соотношение длин векторов
тогда координаты точки C(cx; cy; cz) находятся по формулам
Примеры решения заданий по делению векторов и отрезков
Отрезок AB точками C(3, 4) и D(5, 6) разделён на три равные части. Найти координаты точек A и B.
Р е ш е н и е. Обозначим координаты точек A и B так: А(x1, y1), B(x1, y1). Для отрезка AD точка C является серединой, потому λ = AC / CD = 1 и по формулам деления отрезка в данном соотношении
получим
Подставим в последнее равенство координаты xc, yc, xd, yd:
3 = (x1 + 5)/2, 4 = (y1 + 6)/2,
откуда находим, x1 = 1, y1 = 2. Точка A имеет координаты A(1, 2).
Поскольку точка D есть середина отрезка CB, то xd = (xc + x2)/2, или 5 = (3 + x2)/2, отсюда x2 = 7.
yd = (yc + y2)/2, 6 = (4+y2)/2,
отсюда y2 = 8. Получили B(7, 8).
О т в е т: A(1, 2), B(7, 8).
Даны вершины треугольника A(2, -4), B(4, -5) и C(-4, 7). Определить середины его сторон.
Р е ш е н и е. Воспользуемся формулой для определения середин сторон отрезка, при известных двух точках:
Поскольку отрезки делятся на равные части, то
Тогда формула приобретает вид:
Координата x для отрезка AB равна (2+4)/2 = 3, координата y для отрезка AB равна (-4-5)/2 = -4,5.
Координата x для отрезка AC равна (2-4)/2 = -1, координата y для отрезка AC равна (-4+7)/2 = 1,5.
Координата x для отрезка BC равна (4-4)/2 = 0, координата y для отрезка BC равна (-5+7)/2 = 1.
О т в е т: искомые точки имеют координаты (3; -4,5), (-1; 1,5) и (0; 1).
Даны три вершины параллелограмма A(2, -4), B(4, -2), C(-2, 4). Определить четвёртую вершину D, противоположную B.
Р е ш е н и е. Найдём точку, в которой пересекаются диагонали параллелограмма.
Назовём точку пересечения диагоналей точкой E.
Поскольку этой точкой диагонали делятся на два равных отрезка
то формула приобретает вид:
Найдём середину отрезка AC:
Ex = (2-2)/2 = 0
Ey = (-4+4)/2 = 0
Итак, точка E имеет координаты (0, 0).
Данная точка также является серединой отрезка BD, поскольку это вторая диагональ параллелограмма. Тогда
0 = (Bx+Dx)/2,
подставим известные значения:
0 = (4+Dx)/2
откуда Dx = -4
Теперь найдём вторую координату:
0 = (By+Dy)/2,
подставим известные значения:
0 = (-2+Dy)/2
откуда Dy = 2
О т в е т: D(-4, 2).
Даны вершины треугольника A(2, 3); B(4, -10); C(-4, 1), определить длину его медианы, проведённой из вершины B.
Р е ш е н и е. Назовём точку пересечения медианы и стороны AC точкой D. Поскольку медиана делит сторону треугольника пополам, то воспользуемся формулой нахождения координат точки посередине отрезка:
Dx = (2-4)/2 = -1
Dy = (3+1)/2 = 2
Точка D имеет координаты (-1, 2).
Воспользуемся формулой нахождения длины отрезка, когда известны координаты его крайних точек:
О т в е т: Длина медианы, проведённой из вершины B, равна 13.